mirror of
https://github.com/TECHNOFAB11/zfs-localpv.git
synced 2025-12-12 22:40:12 +01:00
- migrate to go module - bump go version 1.14.4 Signed-off-by: prateekpandey14 <prateek.pandey@mayadata.io>
82 lines
1.9 KiB
Go
82 lines
1.9 KiB
Go
// Copyright ©2015 The Gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package gonum
|
|
|
|
import (
|
|
"math"
|
|
|
|
"gonum.org/v1/gonum/blas"
|
|
"gonum.org/v1/gonum/blas/blas64"
|
|
)
|
|
|
|
// Dpotf2 computes the Cholesky decomposition of the symmetric positive definite
|
|
// matrix a. If ul == blas.Upper, then a is stored as an upper-triangular matrix,
|
|
// and a = U^T U is stored in place into a. If ul == blas.Lower, then a = L L^T
|
|
// is computed and stored in-place into a. If a is not positive definite, false
|
|
// is returned. This is the unblocked version of the algorithm.
|
|
//
|
|
// Dpotf2 is an internal routine. It is exported for testing purposes.
|
|
func (Implementation) Dpotf2(ul blas.Uplo, n int, a []float64, lda int) (ok bool) {
|
|
switch {
|
|
case ul != blas.Upper && ul != blas.Lower:
|
|
panic(badUplo)
|
|
case n < 0:
|
|
panic(nLT0)
|
|
case lda < max(1, n):
|
|
panic(badLdA)
|
|
}
|
|
|
|
// Quick return if possible.
|
|
if n == 0 {
|
|
return true
|
|
}
|
|
|
|
if len(a) < (n-1)*lda+n {
|
|
panic(shortA)
|
|
}
|
|
|
|
bi := blas64.Implementation()
|
|
|
|
if ul == blas.Upper {
|
|
for j := 0; j < n; j++ {
|
|
ajj := a[j*lda+j]
|
|
if j != 0 {
|
|
ajj -= bi.Ddot(j, a[j:], lda, a[j:], lda)
|
|
}
|
|
if ajj <= 0 || math.IsNaN(ajj) {
|
|
a[j*lda+j] = ajj
|
|
return false
|
|
}
|
|
ajj = math.Sqrt(ajj)
|
|
a[j*lda+j] = ajj
|
|
if j < n-1 {
|
|
bi.Dgemv(blas.Trans, j, n-j-1,
|
|
-1, a[j+1:], lda, a[j:], lda,
|
|
1, a[j*lda+j+1:], 1)
|
|
bi.Dscal(n-j-1, 1/ajj, a[j*lda+j+1:], 1)
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
for j := 0; j < n; j++ {
|
|
ajj := a[j*lda+j]
|
|
if j != 0 {
|
|
ajj -= bi.Ddot(j, a[j*lda:], 1, a[j*lda:], 1)
|
|
}
|
|
if ajj <= 0 || math.IsNaN(ajj) {
|
|
a[j*lda+j] = ajj
|
|
return false
|
|
}
|
|
ajj = math.Sqrt(ajj)
|
|
a[j*lda+j] = ajj
|
|
if j < n-1 {
|
|
bi.Dgemv(blas.NoTrans, n-j-1, j,
|
|
-1, a[(j+1)*lda:], lda, a[j*lda:], 1,
|
|
1, a[(j+1)*lda+j:], lda)
|
|
bi.Dscal(n-j-1, 1/ajj, a[(j+1)*lda+j:], lda)
|
|
}
|
|
}
|
|
return true
|
|
}
|