zfs-localpv/vendor/gonum.org/v1/gonum/lapack/gonum/dgerq2.go
prateekpandey14 fa76b346a0 feat(modules): migrate to go modules and bump go version 1.14.4
- migrate to go module
- bump go version 1.14.4

Signed-off-by: prateekpandey14 <prateek.pandey@mayadata.io>
2020-06-09 22:27:01 +05:30

68 lines
1.9 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import "gonum.org/v1/gonum/blas"
// Dgerq2 computes an RQ factorization of the m×n matrix A,
// A = R * Q.
// On exit, if m <= n, the upper triangle of the subarray
// A[0:m, n-m:n] contains the m×m upper triangular matrix R.
// If m >= n, the elements on and above the (m-n)-th subdiagonal
// contain the m×n upper trapezoidal matrix R.
// The remaining elements, with tau, represent the
// orthogonal matrix Q as a product of min(m,n) elementary
// reflectors.
//
// The matrix Q is represented as a product of elementary reflectors
// Q = H_0 H_1 . . . H_{min(m,n)-1}.
// Each H(i) has the form
// H_i = I - tau_i * v * v^T
// where v is a vector with v[0:n-k+i-1] stored in A[m-k+i, 0:n-k+i-1],
// v[n-k+i:n] = 0 and v[n-k+i] = 1.
//
// tau must have length min(m,n) and work must have length m, otherwise
// Dgerq2 will panic.
//
// Dgerq2 is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dgerq2(m, n int, a []float64, lda int, tau, work []float64) {
switch {
case m < 0:
panic(mLT0)
case n < 0:
panic(nLT0)
case lda < max(1, n):
panic(badLdA)
case len(work) < m:
panic(shortWork)
}
// Quick return if possible.
k := min(m, n)
if k == 0 {
return
}
switch {
case len(a) < (m-1)*lda+n:
panic(shortA)
case len(tau) < k:
panic(shortTau)
}
for i := k - 1; i >= 0; i-- {
// Generate elementary reflector H[i] to annihilate
// A[m-k+i, 0:n-k+i-1].
mki := m - k + i
nki := n - k + i
var aii float64
aii, tau[i] = impl.Dlarfg(nki+1, a[mki*lda+nki], a[mki*lda:], 1)
// Apply H[i] to A[0:m-k+i-1, 0:n-k+i] from the right.
a[mki*lda+nki] = 1
impl.Dlarf(blas.Right, mki, nki+1, a[mki*lda:], 1, tau[i], a, lda, work)
a[mki*lda+nki] = aii
}
}