// Copyright ©2015 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package gonum import ( "gonum.org/v1/gonum/blas" "gonum.org/v1/gonum/blas/blas64" ) // Dgetrs solves a system of equations using an LU factorization. // The system of equations solved is // A * X = B if trans == blas.Trans // A^T * X = B if trans == blas.NoTrans // A is a general n×n matrix with stride lda. B is a general matrix of size n×nrhs. // // On entry b contains the elements of the matrix B. On exit, b contains the // elements of X, the solution to the system of equations. // // a and ipiv contain the LU factorization of A and the permutation indices as // computed by Dgetrf. ipiv is zero-indexed. func (impl Implementation) Dgetrs(trans blas.Transpose, n, nrhs int, a []float64, lda int, ipiv []int, b []float64, ldb int) { switch { case trans != blas.NoTrans && trans != blas.Trans && trans != blas.ConjTrans: panic(badTrans) case n < 0: panic(nLT0) case nrhs < 0: panic(nrhsLT0) case lda < max(1, n): panic(badLdA) case ldb < max(1, nrhs): panic(badLdB) } // Quick return if possible. if n == 0 || nrhs == 0 { return } switch { case len(a) < (n-1)*lda+n: panic(shortA) case len(b) < (n-1)*ldb+nrhs: panic(shortB) case len(ipiv) != n: panic(badLenIpiv) } bi := blas64.Implementation() if trans == blas.NoTrans { // Solve A * X = B. impl.Dlaswp(nrhs, b, ldb, 0, n-1, ipiv, 1) // Solve L * X = B, updating b. bi.Dtrsm(blas.Left, blas.Lower, blas.NoTrans, blas.Unit, n, nrhs, 1, a, lda, b, ldb) // Solve U * X = B, updating b. bi.Dtrsm(blas.Left, blas.Upper, blas.NoTrans, blas.NonUnit, n, nrhs, 1, a, lda, b, ldb) return } // Solve A^T * X = B. // Solve U^T * X = B, updating b. bi.Dtrsm(blas.Left, blas.Upper, blas.Trans, blas.NonUnit, n, nrhs, 1, a, lda, b, ldb) // Solve L^T * X = B, updating b. bi.Dtrsm(blas.Left, blas.Lower, blas.Trans, blas.Unit, n, nrhs, 1, a, lda, b, ldb) impl.Dlaswp(nrhs, b, ldb, 0, n-1, ipiv, -1) }