Usecase: A node in the Kubernetes cluster is replaced with a new node. The
new node gets a different `kubernetes.io/hostname`. The storage devices
that were attached to the old node are re-attached to the new node.
Fix: Instead of using the default `kubenetes.io/hostname` as the node affinity
label, this commit changes to use `openebs.io/nodeid`. The ZFS LocalPV driver
will pick the value from the nodes and set the affinity.
Once the old node is removed from the cluster, the K8s scheduler will continue
to schedule applications on the old node only.
User can now modify the value of `openebs.io/nodeid` on the new node to the same
value that was available on the old node. This will make sure the pods/volumes are
scheduled to the node now.
Note: Now to migrate the PV to the other node, we have to move the disks to the other node
and remove the old node from the cluster and set the same label on the new node using
the same key, which will let k8s scheduler to schedule the pods to that node.
Other updates:
* adding faq doc
* renaming the config variable to nodename
Signed-off-by: Pawan <pawan@mayadata.io>
Co-authored-by: Akhil Mohan <akhilerm@gmail.com>
* Update docs/faq.md
Co-authored-by: Akhil Mohan <akhilerm@gmail.com>
Currently controller picks one node and the node agent keeps on trying to
create the volume on that node. There might not be enough space available
on that node to create the volume.
The controller can try on all the nodes sequentially and fail
the request if volume creation fails on all the nodes which satisfies the
topology contraints.
Signed-off-by: Pawan <pawan@mayadata.io>
Encrypted pool does not allow the volume to be pre created for the
restore purpose. Here changing the design to do the restore first
and then create the ZFSVolume object which will bind the volume
already created while doing restore.
Signed-off-by: Pawan <pawan@mayadata.io>
Added a schema validation for backup and restore CR. Also validating
the server address in the backup/restore controller.
Validating the server address as :
^([0-9]+.[0-9]+.[0-9]+.[0-9]+:[0-9]+)$
which is :
<any number>.<any number>.<any number>.<any number>:<any number>
Here we are validating just the format of the IP, not validating that IP should be
correct which will be little more complex. In any case if IP is not correct,
the zfs send will fail, so no need to do complex validation to validate the
correct IP and port.
Signed-off-by: Pawan <pawan@mayadata.io>
This commit adds support for Backup and Restore controller, which will be watching for
the events. The velero plugin will create a Backup CR to create a backup
with the remote location information, the controller will send the data
to that remote location.
In the same way, the velero plugin will create a Restore CR to restore the
volume from the the remote location and the restore controller will restore
the data.
Steps to use velero plugin for ZFS-LocalPV are :
1. install velero
2. add openebs plugin
velero plugin add openebs/velero-plugin:latest
3. Create the volumesnapshot location :
for full backup :-
```yaml
apiVersion: velero.io/v1
kind: VolumeSnapshotLocation
metadata:
name: default
namespace: velero
spec:
provider: openebs.io/zfspv-blockstore
config:
bucket: velero
prefix: zfs
namespace: openebs
provider: aws
region: minio
s3ForcePathStyle: "true"
s3Url: http://minio.velero.svc:9000
```
for incremental backup :-
```yaml
apiVersion: velero.io/v1
kind: VolumeSnapshotLocation
metadata:
name: default
namespace: velero
spec:
provider: openebs.io/zfspv-blockstore
config:
bucket: velero
prefix: zfs
backup: incremental
namespace: openebs
provider: aws
region: minio
s3ForcePathStyle: "true"
s3Url: http://minio.velero.svc:9000
```
4. Create backup
velero backup create my-backup --snapshot-volumes --include-namespaces=velero-ns --volume-snapshot-locations=aws-cloud-default --storage-location=default
5. Create Schedule
velero create schedule newschedule --schedule="*/1 * * * *" --snapshot-volumes --include-namespaces=velero-ns --volume-snapshot-locations=aws-local-default --storage-location=default
6. Restore from backup
velero restore create --from-backup my-backup --restore-volumes=true --namespace-mappings velero-ns:ns1
Signed-off-by: Pawan <pawan@mayadata.io>
Applications who want to share a volume can use below storageclass
to make their volumes shared by multiple pods
```yaml
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: openebs-zfspv
parameters:
shared: "yes"
fstype: "zfs"
poolname: "zfspv-pool"
provisioner: zfs.csi.openebs.io
```
Now the provisioned volume using this storageclass can be used by multiple pods.
Here pods have to make sure of the data consistency and have to have locking mechanism.
One thing to note here is pods will be scheduled to the node where volume is present
so that all the pods can use the same volume as they can access it locally only.
This was we can avoid the NFS overhead and can get the optimal performance also.
Also fixed the log formatting in the GRPC log.
Signed-off-by: Pawan <pawan@mayadata.io>
Readonly flag does not come as mount option, it has
separate field to mention readonly flag. ZFS-LocalPV
driver should check that field and add "ro" as mountoption.
Signed-off-by: Pawan <pawan@mayadata.io>
The controller does not check whether the volume has been created or not
and return successful. Which in turn binds the pvc to the pv.
The PVC should not bound until corresponding zfs volume has been created.
Now controller will check the ZFSVolume CR state to be "Ready" before returning
successful. The CSI will retry the CreateVolume request when it will get
a error reply and when the ZFS node agent creates the ZFS volume and sets the
ZFSVolume CR state to be "Ready", the controller will return success for the
CreateVolume Request and then PVC will be bound.
Signed-off-by: Pawan <pawan@mayadata.io>
Validating few parameters for the ZFSVolume custom resource
- compression can be "on", "off", "lzjb", "gzip", "gzip-[1-9]", "zle" and "lz4"
- encryption can be "on", "off", "aes-128-ccm", "aes-192-ccm", "aes-256-ccm", "aes-128-gcm", "aes-192-gcm", and "aes-256-gcm"
- dedup can be "on" and "off"
- poolname can be string
- ownernodeid can be string
- thinprovision can be "yes" and "no"
- volumetype can be "DATASET" and "ZVOL"
Also added required fields needed to create ZFSVolume CR
- ownerNodeID
- poolname
- volumeType
- capacity
Signed-off-by: Pawan <pawan@mayadata.io>
- To generate the CRD spec `make manifest` generate then under
deploy/yamls directory
- added a update-crd script to automate the steps to generate
CRDs and its validation of each types
Signed-off-by: prateekpandey14 <prateek.pandey@mayadata.io>