Instead of checking for the finalizer, checking for the
volume state to be ready is more intuitive before mounting it.
Also removed duplicate if statement for btrfs which was added while resolveing
the merge conflict in https://github.com/openebs/zfs-localpv/pull/175.
Signed-off-by: Pawan <pawan@mayadata.io>
btrfs, like xfs, needs to generate a new UUID for the
cloned volumes. All the devices with the same UUID will be treated
same for btrfs, so here generating the new UUID for the cloned volumes
using btrfstune command.
Signed-off-by: Pawan <pawan@mayadata.io>
We can not mount the datasets to more than one path via zfs mount command,
shifting to the legacy way of handling ZFS volumes where we can mount/umount
the datasets via legacy mount and umount commands.
This will also add a building block for SINGLE-NODE-MULTI-WRITER Capability.
Signed-off-by: Pawan <pawan@mayadata.io>
PVC will not bound if there are wrong parameters/poolname in the storageclass,
the ZFSVolume CR will be still created and will remain in Pending State,
deletion of the PVC will delete PVC and since PVC is not bound, ZFS-LocalPV
driver will not get the delete call and will leave the ZFSVolume CR hanging there.
Reverting the behavior introduced in https://github.com/openebs/zfs-localpv/pull/121,
Now PVC will be bound but still ZFSVolume will be in Pending state until the volume is created.
Signed-off-by: Pawan <pawan@mayadata.io>
looks like a bug in ZFS as when you change the mountpoint property to none,
ZFS automatically umounts the file system. When we delete the pod, we get the
unmount request for the old pod and mount request for the new pod. Unmount
is done by the driver by setting mountpoint to none and the driver assumes that
unmount has done and proceeded to delete the mountpath, but here zfs has not unmounted
the dataset
```
$ sudo zfs get all zfspv-pool/pvc-3fe69b0e-9f91-4c6e-8e5c-eb4218468765 | grep mount
zfspv-pool/pvc-3fe69b0e-9f91-4c6e-8e5c-eb4218468765 mounted yes -
zfspv-pool/pvc-3fe69b0e-9f91-4c6e-8e5c-eb4218468765 mountpoint none local
zfspv-pool/pvc-3fe69b0e-9f91-4c6e-8e5c-eb4218468765 canmount on
```
here, the driver will assume that dataset has been unmouted and proceed to delete the
mountpath and it will delete the data as part of cleaning up for the NodeUnPublish request.
Shifting to use zfs umount instead of doing zfs set mountpoint=none for umounting the dataset.
Also the driver is using os.RemoveAll which is very risky as it will clean
child also, since the mountpoint is not supposed to have anything,
just os.Remove is sufficient and it will fail if there is anything there.
Signed-off-by: Pawan <pawan@mayadata.io>
There can be cases where openebs namespace has been accidently deleted (Optoro case: https://mdap.zendesk.com/agent/tickets/963), There the driver attempted to destroy the dataset which will first umount the dataset and then try to destroy it, the destroy will fail as volume is busy. Here, as mentioned in the steps to recover, we have to manually mount the dataset
```
6. The driver might have attempted to destroy the volume before going down, which sets the mount as no(this strange behavior on gke ubuntu 18.04), we have to mount the dataset, go to the each node and check if there is any unmounted volume
zfs get mounted
if there is any unmounted dataset with this option as "no", we should do the below :-
mountpath=zfs get -Hp -o value mountpoint <dataset name>
zfs set mountpoint=none
zfs set mountpoint=<mountpath>
this will set the dataset to be mounted.
```
So in this case the volume will be unmounted and still mountpoint will set to the mountpath, so if application pod is deleted later on, it will try to mount the zfs dataset, here just setting the `mountpoint` is not sufficient, as if we have unmounted the zfs dataset (via zfs destroy in this case), so we have to explicitely mount the dataset **otherwise application will start running without any persistence storage**. Here automating the manual steps performed to resolve the problem, we are checking in the code that if zfs dataset is not mounted after setting the mountpoint property, attempt to mount it.
This is not the case with the zvol as it does not attempt to unmount it, so zvols are fine.
Also NodeUnPublish operation MUST be idempotent. If this RPC failed, or the CO does not know if it failed or not, it can choose to call NudeUnPublishRequest again. So handled this and returned successful if volume is not mounted also added descriptive error messages at few places.
Signed-off-by: Pawan <pawan@mayadata.io>
xfs_admin command to generate the new UUID for the cloned
volume fails without returning error if there is log available
in the filesystem :
ERROR: The filesystem has valuable metadata changes in a log that needs to
be replayed. Mount the filesystem to replay the log, and unmount it before
re-running xfs_admin. If you are unable to mount the filesystem, then use
the xfs_repair -L option to destroy the log and attempt a repair.
Note that destroying the log may cause corruption -- please attempt a mount
of the filesystem before doing this.
No UUID will be generated in this case and application can not mount the volume.
Here mounting the filesystem to the temp location with "nouuid" mount option first
so that it can replay the logs first and system is in clean state and then unmount it
and after that generating the UUID with the xfs_admin command.
Signed-off-by: Pawan <pawan@mayadata.io>
for mounting the cloned volume for xfs, a new UUID has to be generated.
We are generating a new UUID for the cloned volumes which are formatted
as xfs using xfs_admin command.
Signed-off-by: Pawan <pawan@mayadata.io>
We can resize the volume by updating the PVC yaml to
the desired size and apply it. The ZFS Driver will take care
of updating the quota in case of dataset. If we are using a
Zvol and have mounted it as ext4 or xfs filesystem, the driver will take
care of expanding the volume via reize2fs/xfs_growfs binaries.
For resize, storageclass that provisions the pvc must suppo
rt resize. We should have allowVolumeExpansion as true in storageclass
```yaml
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: openebs-zfspv
allowVolumeExpansion: true
parameters:
poolname: "zfspv-pool"
provisioner: zfs.csi.openebs.io
```
Signed-off-by: Pawan <pawan@mayadata.io>
This commits support snapshot and clone commands via CSI driver. User can create snap and clone using the following steps.
Note:
- Snapshot is created via reconciliation CR
- Cloned volume will be on the same zpool where the snapshot is taken
- Cloned volume will have same properties as source volume.
-----------------------------------
Create a Snapshotclass
```
kind: VolumeSnapshotClass
apiVersion: snapshot.storage.k8s.io/v1beta1
metadata:
name: zfspv-snapclass
annotations:
snapshot.storage.kubernetes.io/is-default-class: "true"
driver: zfs.csi.openebs.io
deletionPolicy: Delete
```
Once snapshotclass is created, we can use this class to create a Snapshot
```
apiVersion: snapshot.storage.k8s.io/v1beta1
kind: VolumeSnapshot
metadata:
name: zfspv-snap
spec:
volumeSnapshotClassName: zfspv-snapclass
source:
persistentVolumeClaimName: csi-zfspv
```
```
$ kubectl get volumesnapshot
NAME AGE
zfspv-snap 7m52s
```
```
$ kubectl get volumesnapshot -o yaml
apiVersion: v1
items:
- apiVersion: snapshot.storage.k8s.io/v1beta1
kind: VolumeSnapshot
metadata:
annotations:
kubectl.kubernetes.io/last-applied-configuration: |
{"apiVersion":"snapshot.storage.k8s.io/v1beta1","kind":"VolumeSnapshot","metadata":{"annotations":{},"name":"zfspv-snap","namespace":"default"},"spec":{"source":{"persistentVolumeClaimName":"csi-zfspv"},"volumeSnapshotClassName":"zfspv-snapclass"}}
creationTimestamp: "2020-01-30T10:31:24Z"
finalizers:
- snapshot.storage.kubernetes.io/volumesnapshot-as-source-protection
- snapshot.storage.kubernetes.io/volumesnapshot-bound-protection
generation: 1
name: zfspv-snap
namespace: default
resourceVersion: "30040"
selfLink: /apis/snapshot.storage.k8s.io/v1beta1/namespaces/default/volumesnapshots/zfspv-snap
uid: 1a5cf166-c599-4f58-9f3c-f1148be47fca
spec:
source:
persistentVolumeClaimName: csi-zfspv
volumeSnapshotClassName: zfspv-snapclass
status:
boundVolumeSnapshotContentName: snapcontent-1a5cf166-c599-4f58-9f3c-f1148be47fca
creationTime: "2020-01-30T10:31:24Z"
readyToUse: true
restoreSize: "0"
kind: List
metadata:
resourceVersion: ""
selfLink: ""
```
Openebs resource for the created snapshot
```
$ kubectl get snap -n openebs -o yaml
apiVersion: v1
items:
- apiVersion: openebs.io/v1alpha1
kind: ZFSSnapshot
metadata:
creationTimestamp: "2020-01-30T10:31:24Z"
finalizers:
- zfs.openebs.io/finalizer
generation: 2
labels:
kubernetes.io/nodename: pawan-2
openebs.io/persistent-volume: pvc-18cab7c3-ec5e-4264-8507-e6f7df4c789a
name: snapshot-1a5cf166-c599-4f58-9f3c-f1148be47fca
namespace: openebs
resourceVersion: "30035"
selfLink: /apis/openebs.io/v1alpha1/namespaces/openebs/zfssnapshots/snapshot-1a5cf166-c599-4f58-9f3c-f1148be47fca
uid: e29d571c-42b5-4fb7-9110-e1cfc9b96641
spec:
capacity: "4294967296"
fsType: zfs
ownerNodeID: pawan-2
poolName: zfspv-pool
status: Ready
volumeType: DATASET
kind: List
metadata:
resourceVersion: ""
selfLink: ""
```
Create a clone volume
We can provide a datasource as snapshot name to create a clone volume
```yaml
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
name: zfspv-clone
spec:
storageClassName: openebs-zfspv
dataSource:
name: zfspv-snap
kind: VolumeSnapshot
apiGroup: snapshot.storage.k8s.io
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 4Gi
```
It will create a ZFS clone volume from the mentioned snapshot and create the PV on the same node where original volume is there.
Here, As resize is not supported yet, the clone PVC size should match the size of the snapshot.
Also, all the properties from the storageclass will not be considered for the clone case, it will take the properties from the snapshot and create the clone volume. One thing to note here is that, the storageclass in clone PVC should have the same poolname as that of the original volume as across the pool, clone is not supported.
Signed-off-by: Pawan <pawan@mayadata.io>
With "zfs destroy -R" we will delete snapshot and clones also. We should
not use that for deleting the volumes.
Signed-off-by: Pawan <pawan@mayadata.io>
Application can now create a storageclass to create zfs filesystem
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: openebs-zfspv5
allowVolumeExpansion: true
parameters:
blocksize: "4k"
fstype: "zfs"
poolname: "zfspv-pool"
provisioner: zfs.csi.openebs.io
ZFSPV was supporting ext2/3/4 and xfs filesystem only which
adds one extra filesystem layer on top of ZFS filesystem. So now
we can driectly write to the ZFS filesystem and get the optimal performance
by directly creating ZFS filesystem for storage.
Signed-off-by: Pawan <pawan@mayadata.io>
This PR adds support to allow the CSI driver to pick up a node matching the topology specified in the storage class. Admin can specify allowedTopologies in the StorageClass to specify the nodes where the zfs pools are setup
```yaml
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: openebs-zfspv
allowVolumeExpansion: true
parameters:
blocksize: "4k"
compression: "on"
dedup: "on"
thinprovision: "yes"
poolname: "zfspv-pool"
provisioner: zfs-localpv
volumeBindingMode: WaitForFirstConsumer
allowedTopologies:
- matchLabelExpressions:
- key: kubernetes.io/hostname
values:
- gke-zfspv-pawan-default-pool-c8929518-cgd4
- gke-zfspv-pawan-default-pool-c8929518-dxzc
```
Note: This PR picks up the first node from the list of nodes available.
Signed-off-by: Pawan <pawan@mayadata.io>
Adding support for enabling encryption using a custom key.
Also, adding support to inherit the properties from ZPOOL
which are not listed in the storage class, ZFS driver will
not pass default values while creating the volume. Those
properties will be inherited from the ZPOOL.
we can use the encryption option in storage class
```
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: openebs-zfspv
allowVolumeExpansion: true
parameters:
blocksize: "4k"
compression: "on"
dedup: "on"
thinprovision: "yes"
encryption: "on"
keyformat: "raw"
keylocation: "file:///home/keys/key"
poolname: "zfspv-pool"
provisioner: openebs.io/zfs
```
Just a note, the key file should be mounted inside the node-agent container so that we can use that file while provisioning the volume. keyformat can be raw, hex or passphrase.
Signed-off-by: Pawan <pawan@mayadata.io>
provisioning and deprovisioning of
the volumes on the node where zfs pool
has already been setup. Pool name and the volume
parameters has to be given in storage class
which will be used to provision the volume.
Signed-off-by: Pawan <pawan@mayadata.io>