Readonly flag does not come as mount option, it has
separate field to mention readonly flag. ZFS-LocalPV
driver should check that field and add "ro" as mountoption.
Signed-off-by: Pawan <pawan@mayadata.io>
This commit adds the support for creating a Raw Block Volume request using volumemode as block in PVC :-
```
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
name: block-claim
spec:
volumeMode: Block
storageClassName: zfspv-block
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 5Gi
```
The driver will create a zvol for this volume and bind mount the block device at the given path.
Signed-off-by: Pawan <pawan@mayadata.io>
This commit adds the support for use to specify custom labels to the kubernetes nodes and use them in the allowedToplogoies section of the StorageClass.
Few notes:
- This PR depends on the CSI driver's capability to support custom topology keys.
- label on the nodes should be added first and then deploy the driver to make it aware of
all the labels that node has. If labels are added after ZFS-LocalPV driver
has been deployed, a restart all the node csi driver agents is required so that the driver
can pick the labels and add them as supported topology keys.
- if storageclass is using Immediate binding mode and topology key is not mentioned
then all the nodes should be labeled using same key, that means:
- same key should be present on all nodes, nodes can have different values for those keys.
- If nodes are labeled with different keys i.e. some nodes are having different keys, then ZFSPV's default scheduler can not effictively do the volume count based scheduling. In this case the CSI provisioner will pick keys from any random node and then prepare the preferred topology list using the nodes which has those keys defined. And ZFSPV scheduler will schedule the PV among those nodes only.
Signed-off-by: Pawan <pawan@mayadata.io>
There can be cases where openebs namespace has been accidently deleted (Optoro case: https://mdap.zendesk.com/agent/tickets/963), There the driver attempted to destroy the dataset which will first umount the dataset and then try to destroy it, the destroy will fail as volume is busy. Here, as mentioned in the steps to recover, we have to manually mount the dataset
```
6. The driver might have attempted to destroy the volume before going down, which sets the mount as no(this strange behavior on gke ubuntu 18.04), we have to mount the dataset, go to the each node and check if there is any unmounted volume
zfs get mounted
if there is any unmounted dataset with this option as "no", we should do the below :-
mountpath=zfs get -Hp -o value mountpoint <dataset name>
zfs set mountpoint=none
zfs set mountpoint=<mountpath>
this will set the dataset to be mounted.
```
So in this case the volume will be unmounted and still mountpoint will set to the mountpath, so if application pod is deleted later on, it will try to mount the zfs dataset, here just setting the `mountpoint` is not sufficient, as if we have unmounted the zfs dataset (via zfs destroy in this case), so we have to explicitely mount the dataset **otherwise application will start running without any persistence storage**. Here automating the manual steps performed to resolve the problem, we are checking in the code that if zfs dataset is not mounted after setting the mountpoint property, attempt to mount it.
This is not the case with the zvol as it does not attempt to unmount it, so zvols are fine.
Also NodeUnPublish operation MUST be idempotent. If this RPC failed, or the CO does not know if it failed or not, it can choose to call NudeUnPublishRequest again. So handled this and returned successful if volume is not mounted also added descriptive error messages at few places.
Signed-off-by: Pawan <pawan@mayadata.io>
We can resize the volume by updating the PVC yaml to
the desired size and apply it. The ZFS Driver will take care
of updating the quota in case of dataset. If we are using a
Zvol and have mounted it as ext4 or xfs filesystem, the driver will take
care of expanding the volume via reize2fs/xfs_growfs binaries.
For resize, storageclass that provisions the pvc must suppo
rt resize. We should have allowVolumeExpansion as true in storageclass
```yaml
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: openebs-zfspv
allowVolumeExpansion: true
parameters:
poolname: "zfspv-pool"
provisioner: zfs.csi.openebs.io
```
Signed-off-by: Pawan <pawan@mayadata.io>
This commits support snapshot and clone commands via CSI driver. User can create snap and clone using the following steps.
Note:
- Snapshot is created via reconciliation CR
- Cloned volume will be on the same zpool where the snapshot is taken
- Cloned volume will have same properties as source volume.
-----------------------------------
Create a Snapshotclass
```
kind: VolumeSnapshotClass
apiVersion: snapshot.storage.k8s.io/v1beta1
metadata:
name: zfspv-snapclass
annotations:
snapshot.storage.kubernetes.io/is-default-class: "true"
driver: zfs.csi.openebs.io
deletionPolicy: Delete
```
Once snapshotclass is created, we can use this class to create a Snapshot
```
apiVersion: snapshot.storage.k8s.io/v1beta1
kind: VolumeSnapshot
metadata:
name: zfspv-snap
spec:
volumeSnapshotClassName: zfspv-snapclass
source:
persistentVolumeClaimName: csi-zfspv
```
```
$ kubectl get volumesnapshot
NAME AGE
zfspv-snap 7m52s
```
```
$ kubectl get volumesnapshot -o yaml
apiVersion: v1
items:
- apiVersion: snapshot.storage.k8s.io/v1beta1
kind: VolumeSnapshot
metadata:
annotations:
kubectl.kubernetes.io/last-applied-configuration: |
{"apiVersion":"snapshot.storage.k8s.io/v1beta1","kind":"VolumeSnapshot","metadata":{"annotations":{},"name":"zfspv-snap","namespace":"default"},"spec":{"source":{"persistentVolumeClaimName":"csi-zfspv"},"volumeSnapshotClassName":"zfspv-snapclass"}}
creationTimestamp: "2020-01-30T10:31:24Z"
finalizers:
- snapshot.storage.kubernetes.io/volumesnapshot-as-source-protection
- snapshot.storage.kubernetes.io/volumesnapshot-bound-protection
generation: 1
name: zfspv-snap
namespace: default
resourceVersion: "30040"
selfLink: /apis/snapshot.storage.k8s.io/v1beta1/namespaces/default/volumesnapshots/zfspv-snap
uid: 1a5cf166-c599-4f58-9f3c-f1148be47fca
spec:
source:
persistentVolumeClaimName: csi-zfspv
volumeSnapshotClassName: zfspv-snapclass
status:
boundVolumeSnapshotContentName: snapcontent-1a5cf166-c599-4f58-9f3c-f1148be47fca
creationTime: "2020-01-30T10:31:24Z"
readyToUse: true
restoreSize: "0"
kind: List
metadata:
resourceVersion: ""
selfLink: ""
```
Openebs resource for the created snapshot
```
$ kubectl get snap -n openebs -o yaml
apiVersion: v1
items:
- apiVersion: openebs.io/v1alpha1
kind: ZFSSnapshot
metadata:
creationTimestamp: "2020-01-30T10:31:24Z"
finalizers:
- zfs.openebs.io/finalizer
generation: 2
labels:
kubernetes.io/nodename: pawan-2
openebs.io/persistent-volume: pvc-18cab7c3-ec5e-4264-8507-e6f7df4c789a
name: snapshot-1a5cf166-c599-4f58-9f3c-f1148be47fca
namespace: openebs
resourceVersion: "30035"
selfLink: /apis/openebs.io/v1alpha1/namespaces/openebs/zfssnapshots/snapshot-1a5cf166-c599-4f58-9f3c-f1148be47fca
uid: e29d571c-42b5-4fb7-9110-e1cfc9b96641
spec:
capacity: "4294967296"
fsType: zfs
ownerNodeID: pawan-2
poolName: zfspv-pool
status: Ready
volumeType: DATASET
kind: List
metadata:
resourceVersion: ""
selfLink: ""
```
Create a clone volume
We can provide a datasource as snapshot name to create a clone volume
```yaml
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
name: zfspv-clone
spec:
storageClassName: openebs-zfspv
dataSource:
name: zfspv-snap
kind: VolumeSnapshot
apiGroup: snapshot.storage.k8s.io
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 4Gi
```
It will create a ZFS clone volume from the mentioned snapshot and create the PV on the same node where original volume is there.
Here, As resize is not supported yet, the clone PVC size should match the size of the snapshot.
Also, all the properties from the storageclass will not be considered for the clone case, it will take the properties from the snapshot and create the clone volume. One thing to note here is that, the storageclass in clone PVC should have the same poolname as that of the original volume as across the pool, clone is not supported.
Signed-off-by: Pawan <pawan@mayadata.io>
as it does the management task also corrected few logs
and renamed zvol to zfs(as we support zvol and dataset both)
Signed-off-by: Pawan <pawan@mayadata.io>
Application can now create a storageclass to create zfs filesystem
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: openebs-zfspv5
allowVolumeExpansion: true
parameters:
blocksize: "4k"
fstype: "zfs"
poolname: "zfspv-pool"
provisioner: zfs.csi.openebs.io
ZFSPV was supporting ext2/3/4 and xfs filesystem only which
adds one extra filesystem layer on top of ZFS filesystem. So now
we can driectly write to the ZFS filesystem and get the optimal performance
by directly creating ZFS filesystem for storage.
Signed-off-by: Pawan <pawan@mayadata.io>
This PR adds support to allow the CSI driver to pick up a node matching the topology specified in the storage class. Admin can specify allowedTopologies in the StorageClass to specify the nodes where the zfs pools are setup
```yaml
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: openebs-zfspv
allowVolumeExpansion: true
parameters:
blocksize: "4k"
compression: "on"
dedup: "on"
thinprovision: "yes"
poolname: "zfspv-pool"
provisioner: zfs-localpv
volumeBindingMode: WaitForFirstConsumer
allowedTopologies:
- matchLabelExpressions:
- key: kubernetes.io/hostname
values:
- gke-zfspv-pawan-default-pool-c8929518-cgd4
- gke-zfspv-pawan-default-pool-c8929518-dxzc
```
Note: This PR picks up the first node from the list of nodes available.
Signed-off-by: Pawan <pawan@mayadata.io>
provisioning and deprovisioning of
the volumes on the node where zfs pool
has already been setup. Pool name and the volume
parameters has to be given in storage class
which will be used to provision the volume.
Signed-off-by: Pawan <pawan@mayadata.io>