This commit adds the support for use to specify custom labels to the kubernetes nodes and use them in the allowedToplogoies section of the StorageClass.
Few notes:
- This PR depends on the CSI driver's capability to support custom topology keys.
- label on the nodes should be added first and then deploy the driver to make it aware of
all the labels that node has. If labels are added after ZFS-LocalPV driver
has been deployed, a restart all the node csi driver agents is required so that the driver
can pick the labels and add them as supported topology keys.
- if storageclass is using Immediate binding mode and topology key is not mentioned
then all the nodes should be labeled using same key, that means:
- same key should be present on all nodes, nodes can have different values for those keys.
- If nodes are labeled with different keys i.e. some nodes are having different keys, then ZFSPV's default scheduler can not effictively do the volume count based scheduling. In this case the CSI provisioner will pick keys from any random node and then prepare the preferred topology list using the nodes which has those keys defined. And ZFSPV scheduler will schedule the PV among those nodes only.
Signed-off-by: Pawan <pawan@mayadata.io>
This commits support snapshot and clone commands via CSI driver. User can create snap and clone using the following steps.
Note:
- Snapshot is created via reconciliation CR
- Cloned volume will be on the same zpool where the snapshot is taken
- Cloned volume will have same properties as source volume.
-----------------------------------
Create a Snapshotclass
```
kind: VolumeSnapshotClass
apiVersion: snapshot.storage.k8s.io/v1beta1
metadata:
name: zfspv-snapclass
annotations:
snapshot.storage.kubernetes.io/is-default-class: "true"
driver: zfs.csi.openebs.io
deletionPolicy: Delete
```
Once snapshotclass is created, we can use this class to create a Snapshot
```
apiVersion: snapshot.storage.k8s.io/v1beta1
kind: VolumeSnapshot
metadata:
name: zfspv-snap
spec:
volumeSnapshotClassName: zfspv-snapclass
source:
persistentVolumeClaimName: csi-zfspv
```
```
$ kubectl get volumesnapshot
NAME AGE
zfspv-snap 7m52s
```
```
$ kubectl get volumesnapshot -o yaml
apiVersion: v1
items:
- apiVersion: snapshot.storage.k8s.io/v1beta1
kind: VolumeSnapshot
metadata:
annotations:
kubectl.kubernetes.io/last-applied-configuration: |
{"apiVersion":"snapshot.storage.k8s.io/v1beta1","kind":"VolumeSnapshot","metadata":{"annotations":{},"name":"zfspv-snap","namespace":"default"},"spec":{"source":{"persistentVolumeClaimName":"csi-zfspv"},"volumeSnapshotClassName":"zfspv-snapclass"}}
creationTimestamp: "2020-01-30T10:31:24Z"
finalizers:
- snapshot.storage.kubernetes.io/volumesnapshot-as-source-protection
- snapshot.storage.kubernetes.io/volumesnapshot-bound-protection
generation: 1
name: zfspv-snap
namespace: default
resourceVersion: "30040"
selfLink: /apis/snapshot.storage.k8s.io/v1beta1/namespaces/default/volumesnapshots/zfspv-snap
uid: 1a5cf166-c599-4f58-9f3c-f1148be47fca
spec:
source:
persistentVolumeClaimName: csi-zfspv
volumeSnapshotClassName: zfspv-snapclass
status:
boundVolumeSnapshotContentName: snapcontent-1a5cf166-c599-4f58-9f3c-f1148be47fca
creationTime: "2020-01-30T10:31:24Z"
readyToUse: true
restoreSize: "0"
kind: List
metadata:
resourceVersion: ""
selfLink: ""
```
Openebs resource for the created snapshot
```
$ kubectl get snap -n openebs -o yaml
apiVersion: v1
items:
- apiVersion: openebs.io/v1alpha1
kind: ZFSSnapshot
metadata:
creationTimestamp: "2020-01-30T10:31:24Z"
finalizers:
- zfs.openebs.io/finalizer
generation: 2
labels:
kubernetes.io/nodename: pawan-2
openebs.io/persistent-volume: pvc-18cab7c3-ec5e-4264-8507-e6f7df4c789a
name: snapshot-1a5cf166-c599-4f58-9f3c-f1148be47fca
namespace: openebs
resourceVersion: "30035"
selfLink: /apis/openebs.io/v1alpha1/namespaces/openebs/zfssnapshots/snapshot-1a5cf166-c599-4f58-9f3c-f1148be47fca
uid: e29d571c-42b5-4fb7-9110-e1cfc9b96641
spec:
capacity: "4294967296"
fsType: zfs
ownerNodeID: pawan-2
poolName: zfspv-pool
status: Ready
volumeType: DATASET
kind: List
metadata:
resourceVersion: ""
selfLink: ""
```
Create a clone volume
We can provide a datasource as snapshot name to create a clone volume
```yaml
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
name: zfspv-clone
spec:
storageClassName: openebs-zfspv
dataSource:
name: zfspv-snap
kind: VolumeSnapshot
apiGroup: snapshot.storage.k8s.io
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 4Gi
```
It will create a ZFS clone volume from the mentioned snapshot and create the PV on the same node where original volume is there.
Here, As resize is not supported yet, the clone PVC size should match the size of the snapshot.
Also, all the properties from the storageclass will not be considered for the clone case, it will take the properties from the snapshot and create the clone volume. One thing to note here is that, the storageclass in clone PVC should have the same poolname as that of the original volume as across the pool, clone is not supported.
Signed-off-by: Pawan <pawan@mayadata.io>
as it does the management task also corrected few logs
and renamed zvol to zfs(as we support zvol and dataset both)
Signed-off-by: Pawan <pawan@mayadata.io>
Application can now create a storageclass to create zfs filesystem
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: openebs-zfspv5
allowVolumeExpansion: true
parameters:
blocksize: "4k"
fstype: "zfs"
poolname: "zfspv-pool"
provisioner: zfs.csi.openebs.io
ZFSPV was supporting ext2/3/4 and xfs filesystem only which
adds one extra filesystem layer on top of ZFS filesystem. So now
we can driectly write to the ZFS filesystem and get the optimal performance
by directly creating ZFS filesystem for storage.
Signed-off-by: Pawan <pawan@mayadata.io>
This is an initial scheduler implementation for ZFS Local PV.
* adding scheduler as a configurable option
* adding volumeWeightedScheduler as scheduling logic
The volumeWeightedScheduler will go through all the nodes as per
topology information and it will pick the node which has less
volume provisioned in the given pool.
lets say there are 2 nodes node1 and node2 with below pool configuration :-
```
node1
|
|-----> pool1
| |
| |------> pvc1
| |------> pvc2
|-----> pool2
|------> pvc3
node2
|
|-----> pool1
| |
| |------> pvc4
|-----> pool2
|------> pvc5
|------> pvc6
```
So if application is using pool1 as shown in the below storage class, then ZFS driver will schedule it on node2 as it has one volume as compared to node1 which has 2 volumes in pool1.
```yaml
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
name: openebs-zfspv
provisioner: zfs.csi.openebs.io
parameters:
blocksize: "4k"
compression: "on"
dedup: "on"
thinprovision: "yes"
poolname: "pool1"
```
So if application is using pool2 as shown in the below storage class, then ZFS driver will schedule it on node1 as it has one volume only as compared node2 which has 2 volumes in pool2.
```yaml
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
name: openebs-zfspv
provisioner: zfs.csi.openebs.io
parameters:
blocksize: "4k"
compression: "on"
dedup: "on"
thinprovision: "yes"
poolname: "pool2"
```
In case of same number of volumes on all the nodes for the given pool, it can pick any node and schedule the PV on that.
Signed-off-by: Pawan <pawan@mayadata.io>