mirror of
https://github.com/TECHNOFAB11/zfs-localpv.git
synced 2025-12-12 14:30:12 +01:00
feat(modules): migrate to go modules and bump go version 1.14.4
- migrate to go module - bump go version 1.14.4 Signed-off-by: prateekpandey14 <prateek.pandey@mayadata.io>
This commit is contained in:
parent
f5ae3ff476
commit
fa76b346a0
837 changed files with 104140 additions and 158314 deletions
741
vendor/gonum.org/v1/gonum/mat/vector.go
generated
vendored
Normal file
741
vendor/gonum.org/v1/gonum/mat/vector.go
generated
vendored
Normal file
|
|
@ -0,0 +1,741 @@
|
|||
// Copyright ©2013 The Gonum Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package mat
|
||||
|
||||
import (
|
||||
"gonum.org/v1/gonum/blas"
|
||||
"gonum.org/v1/gonum/blas/blas64"
|
||||
"gonum.org/v1/gonum/internal/asm/f64"
|
||||
)
|
||||
|
||||
var (
|
||||
vector *VecDense
|
||||
|
||||
_ Matrix = vector
|
||||
_ Vector = vector
|
||||
_ Reseter = vector
|
||||
)
|
||||
|
||||
// Vector is a vector.
|
||||
type Vector interface {
|
||||
Matrix
|
||||
AtVec(int) float64
|
||||
Len() int
|
||||
}
|
||||
|
||||
// TransposeVec is a type for performing an implicit transpose of a Vector.
|
||||
// It implements the Vector interface, returning values from the transpose
|
||||
// of the vector within.
|
||||
type TransposeVec struct {
|
||||
Vector Vector
|
||||
}
|
||||
|
||||
// At returns the value of the element at row i and column j of the transposed
|
||||
// matrix, that is, row j and column i of the Vector field.
|
||||
func (t TransposeVec) At(i, j int) float64 {
|
||||
return t.Vector.At(j, i)
|
||||
}
|
||||
|
||||
// AtVec returns the element at position i. It panics if i is out of bounds.
|
||||
func (t TransposeVec) AtVec(i int) float64 {
|
||||
return t.Vector.AtVec(i)
|
||||
}
|
||||
|
||||
// Dims returns the dimensions of the transposed vector.
|
||||
func (t TransposeVec) Dims() (r, c int) {
|
||||
c, r = t.Vector.Dims()
|
||||
return r, c
|
||||
}
|
||||
|
||||
// T performs an implicit transpose by returning the Vector field.
|
||||
func (t TransposeVec) T() Matrix {
|
||||
return t.Vector
|
||||
}
|
||||
|
||||
// Len returns the number of columns in the vector.
|
||||
func (t TransposeVec) Len() int {
|
||||
return t.Vector.Len()
|
||||
}
|
||||
|
||||
// TVec performs an implicit transpose by returning the Vector field.
|
||||
func (t TransposeVec) TVec() Vector {
|
||||
return t.Vector
|
||||
}
|
||||
|
||||
// Untranspose returns the Vector field.
|
||||
func (t TransposeVec) Untranspose() Matrix {
|
||||
return t.Vector
|
||||
}
|
||||
|
||||
func (t TransposeVec) UntransposeVec() Vector {
|
||||
return t.Vector
|
||||
}
|
||||
|
||||
// VecDense represents a column vector.
|
||||
type VecDense struct {
|
||||
mat blas64.Vector
|
||||
// A BLAS vector can have a negative increment, but allowing this
|
||||
// in the mat type complicates a lot of code, and doesn't gain anything.
|
||||
// VecDense must have positive increment in this package.
|
||||
}
|
||||
|
||||
// NewVecDense creates a new VecDense of length n. If data == nil,
|
||||
// a new slice is allocated for the backing slice. If len(data) == n, data is
|
||||
// used as the backing slice, and changes to the elements of the returned VecDense
|
||||
// will be reflected in data. If neither of these is true, NewVecDense will panic.
|
||||
// NewVecDense will panic if n is zero.
|
||||
func NewVecDense(n int, data []float64) *VecDense {
|
||||
if n <= 0 {
|
||||
if n == 0 {
|
||||
panic(ErrZeroLength)
|
||||
}
|
||||
panic("mat: negative dimension")
|
||||
}
|
||||
if len(data) != n && data != nil {
|
||||
panic(ErrShape)
|
||||
}
|
||||
if data == nil {
|
||||
data = make([]float64, n)
|
||||
}
|
||||
return &VecDense{
|
||||
mat: blas64.Vector{
|
||||
N: n,
|
||||
Inc: 1,
|
||||
Data: data,
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
// SliceVec returns a new Vector that shares backing data with the receiver.
|
||||
// The returned matrix starts at i of the receiver and extends k-i elements.
|
||||
// SliceVec panics with ErrIndexOutOfRange if the slice is outside the capacity
|
||||
// of the receiver.
|
||||
func (v *VecDense) SliceVec(i, k int) Vector {
|
||||
if i < 0 || k <= i || v.Cap() < k {
|
||||
panic(ErrIndexOutOfRange)
|
||||
}
|
||||
return &VecDense{
|
||||
mat: blas64.Vector{
|
||||
N: k - i,
|
||||
Inc: v.mat.Inc,
|
||||
Data: v.mat.Data[i*v.mat.Inc : (k-1)*v.mat.Inc+1],
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
// Dims returns the number of rows and columns in the matrix. Columns is always 1
|
||||
// for a non-Reset vector.
|
||||
func (v *VecDense) Dims() (r, c int) {
|
||||
if v.IsZero() {
|
||||
return 0, 0
|
||||
}
|
||||
return v.mat.N, 1
|
||||
}
|
||||
|
||||
// Caps returns the number of rows and columns in the backing matrix. Columns is always 1
|
||||
// for a non-Reset vector.
|
||||
func (v *VecDense) Caps() (r, c int) {
|
||||
if v.IsZero() {
|
||||
return 0, 0
|
||||
}
|
||||
return v.Cap(), 1
|
||||
}
|
||||
|
||||
// Len returns the length of the vector.
|
||||
func (v *VecDense) Len() int {
|
||||
return v.mat.N
|
||||
}
|
||||
|
||||
// Cap returns the capacity of the vector.
|
||||
func (v *VecDense) Cap() int {
|
||||
if v.IsZero() {
|
||||
return 0
|
||||
}
|
||||
return (cap(v.mat.Data)-1)/v.mat.Inc + 1
|
||||
}
|
||||
|
||||
// T performs an implicit transpose by returning the receiver inside a Transpose.
|
||||
func (v *VecDense) T() Matrix {
|
||||
return Transpose{v}
|
||||
}
|
||||
|
||||
// TVec performs an implicit transpose by returning the receiver inside a TransposeVec.
|
||||
func (v *VecDense) TVec() Vector {
|
||||
return TransposeVec{v}
|
||||
}
|
||||
|
||||
// Reset zeros the length of the vector so that it can be reused as the
|
||||
// receiver of a dimensionally restricted operation.
|
||||
//
|
||||
// See the Reseter interface for more information.
|
||||
func (v *VecDense) Reset() {
|
||||
// No change of Inc or N to 0 may be
|
||||
// made unless both are set to 0.
|
||||
v.mat.Inc = 0
|
||||
v.mat.N = 0
|
||||
v.mat.Data = v.mat.Data[:0]
|
||||
}
|
||||
|
||||
// Zero sets all of the matrix elements to zero.
|
||||
func (v *VecDense) Zero() {
|
||||
for i := 0; i < v.mat.N; i++ {
|
||||
v.mat.Data[v.mat.Inc*i] = 0
|
||||
}
|
||||
}
|
||||
|
||||
// CloneVec makes a copy of a into the receiver, overwriting the previous value
|
||||
// of the receiver.
|
||||
func (v *VecDense) CloneVec(a Vector) {
|
||||
if v == a {
|
||||
return
|
||||
}
|
||||
n := a.Len()
|
||||
v.mat = blas64.Vector{
|
||||
N: n,
|
||||
Inc: 1,
|
||||
Data: use(v.mat.Data, n),
|
||||
}
|
||||
if r, ok := a.(RawVectorer); ok {
|
||||
blas64.Copy(r.RawVector(), v.mat)
|
||||
return
|
||||
}
|
||||
for i := 0; i < a.Len(); i++ {
|
||||
v.SetVec(i, a.AtVec(i))
|
||||
}
|
||||
}
|
||||
|
||||
// VecDenseCopyOf returns a newly allocated copy of the elements of a.
|
||||
func VecDenseCopyOf(a Vector) *VecDense {
|
||||
v := &VecDense{}
|
||||
v.CloneVec(a)
|
||||
return v
|
||||
}
|
||||
|
||||
func (v *VecDense) RawVector() blas64.Vector {
|
||||
return v.mat
|
||||
}
|
||||
|
||||
// CopyVec makes a copy of elements of a into the receiver. It is similar to the
|
||||
// built-in copy; it copies as much as the overlap between the two vectors and
|
||||
// returns the number of elements it copied.
|
||||
func (v *VecDense) CopyVec(a Vector) int {
|
||||
n := min(v.Len(), a.Len())
|
||||
if v == a {
|
||||
return n
|
||||
}
|
||||
if r, ok := a.(RawVectorer); ok {
|
||||
blas64.Copy(r.RawVector(), v.mat)
|
||||
return n
|
||||
}
|
||||
for i := 0; i < n; i++ {
|
||||
v.setVec(i, a.AtVec(i))
|
||||
}
|
||||
return n
|
||||
}
|
||||
|
||||
// ScaleVec scales the vector a by alpha, placing the result in the receiver.
|
||||
func (v *VecDense) ScaleVec(alpha float64, a Vector) {
|
||||
n := a.Len()
|
||||
|
||||
if v == a {
|
||||
if v.mat.Inc == 1 {
|
||||
f64.ScalUnitary(alpha, v.mat.Data)
|
||||
return
|
||||
}
|
||||
f64.ScalInc(alpha, v.mat.Data, uintptr(n), uintptr(v.mat.Inc))
|
||||
return
|
||||
}
|
||||
|
||||
v.reuseAs(n)
|
||||
|
||||
if rv, ok := a.(RawVectorer); ok {
|
||||
mat := rv.RawVector()
|
||||
v.checkOverlap(mat)
|
||||
if v.mat.Inc == 1 && mat.Inc == 1 {
|
||||
f64.ScalUnitaryTo(v.mat.Data, alpha, mat.Data)
|
||||
return
|
||||
}
|
||||
f64.ScalIncTo(v.mat.Data, uintptr(v.mat.Inc),
|
||||
alpha, mat.Data, uintptr(n), uintptr(mat.Inc))
|
||||
return
|
||||
}
|
||||
|
||||
for i := 0; i < n; i++ {
|
||||
v.setVec(i, alpha*a.AtVec(i))
|
||||
}
|
||||
}
|
||||
|
||||
// AddScaledVec adds the vectors a and alpha*b, placing the result in the receiver.
|
||||
func (v *VecDense) AddScaledVec(a Vector, alpha float64, b Vector) {
|
||||
if alpha == 1 {
|
||||
v.AddVec(a, b)
|
||||
return
|
||||
}
|
||||
if alpha == -1 {
|
||||
v.SubVec(a, b)
|
||||
return
|
||||
}
|
||||
|
||||
ar := a.Len()
|
||||
br := b.Len()
|
||||
|
||||
if ar != br {
|
||||
panic(ErrShape)
|
||||
}
|
||||
|
||||
var amat, bmat blas64.Vector
|
||||
fast := true
|
||||
aU, _ := untranspose(a)
|
||||
if rv, ok := aU.(RawVectorer); ok {
|
||||
amat = rv.RawVector()
|
||||
if v != a {
|
||||
v.checkOverlap(amat)
|
||||
}
|
||||
} else {
|
||||
fast = false
|
||||
}
|
||||
bU, _ := untranspose(b)
|
||||
if rv, ok := bU.(RawVectorer); ok {
|
||||
bmat = rv.RawVector()
|
||||
if v != b {
|
||||
v.checkOverlap(bmat)
|
||||
}
|
||||
} else {
|
||||
fast = false
|
||||
}
|
||||
|
||||
v.reuseAs(ar)
|
||||
|
||||
switch {
|
||||
case alpha == 0: // v <- a
|
||||
if v == a {
|
||||
return
|
||||
}
|
||||
v.CopyVec(a)
|
||||
case v == a && v == b: // v <- v + alpha * v = (alpha + 1) * v
|
||||
blas64.Scal(alpha+1, v.mat)
|
||||
case !fast: // v <- a + alpha * b without blas64 support.
|
||||
for i := 0; i < ar; i++ {
|
||||
v.setVec(i, a.AtVec(i)+alpha*b.AtVec(i))
|
||||
}
|
||||
case v == a && v != b: // v <- v + alpha * b
|
||||
if v.mat.Inc == 1 && bmat.Inc == 1 {
|
||||
// Fast path for a common case.
|
||||
f64.AxpyUnitaryTo(v.mat.Data, alpha, bmat.Data, amat.Data)
|
||||
} else {
|
||||
f64.AxpyInc(alpha, bmat.Data, v.mat.Data,
|
||||
uintptr(ar), uintptr(bmat.Inc), uintptr(v.mat.Inc), 0, 0)
|
||||
}
|
||||
default: // v <- a + alpha * b or v <- a + alpha * v
|
||||
if v.mat.Inc == 1 && amat.Inc == 1 && bmat.Inc == 1 {
|
||||
// Fast path for a common case.
|
||||
f64.AxpyUnitaryTo(v.mat.Data, alpha, bmat.Data, amat.Data)
|
||||
} else {
|
||||
f64.AxpyIncTo(v.mat.Data, uintptr(v.mat.Inc), 0,
|
||||
alpha, bmat.Data, amat.Data,
|
||||
uintptr(ar), uintptr(bmat.Inc), uintptr(amat.Inc), 0, 0)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// AddVec adds the vectors a and b, placing the result in the receiver.
|
||||
func (v *VecDense) AddVec(a, b Vector) {
|
||||
ar := a.Len()
|
||||
br := b.Len()
|
||||
|
||||
if ar != br {
|
||||
panic(ErrShape)
|
||||
}
|
||||
|
||||
v.reuseAs(ar)
|
||||
|
||||
aU, _ := untranspose(a)
|
||||
bU, _ := untranspose(b)
|
||||
|
||||
if arv, ok := aU.(RawVectorer); ok {
|
||||
if brv, ok := bU.(RawVectorer); ok {
|
||||
amat := arv.RawVector()
|
||||
bmat := brv.RawVector()
|
||||
|
||||
if v != a {
|
||||
v.checkOverlap(amat)
|
||||
}
|
||||
if v != b {
|
||||
v.checkOverlap(bmat)
|
||||
}
|
||||
|
||||
if v.mat.Inc == 1 && amat.Inc == 1 && bmat.Inc == 1 {
|
||||
// Fast path for a common case.
|
||||
f64.AxpyUnitaryTo(v.mat.Data, 1, bmat.Data, amat.Data)
|
||||
return
|
||||
}
|
||||
f64.AxpyIncTo(v.mat.Data, uintptr(v.mat.Inc), 0,
|
||||
1, bmat.Data, amat.Data,
|
||||
uintptr(ar), uintptr(bmat.Inc), uintptr(amat.Inc), 0, 0)
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
for i := 0; i < ar; i++ {
|
||||
v.setVec(i, a.AtVec(i)+b.AtVec(i))
|
||||
}
|
||||
}
|
||||
|
||||
// SubVec subtracts the vector b from a, placing the result in the receiver.
|
||||
func (v *VecDense) SubVec(a, b Vector) {
|
||||
ar := a.Len()
|
||||
br := b.Len()
|
||||
|
||||
if ar != br {
|
||||
panic(ErrShape)
|
||||
}
|
||||
|
||||
v.reuseAs(ar)
|
||||
|
||||
aU, _ := untranspose(a)
|
||||
bU, _ := untranspose(b)
|
||||
|
||||
if arv, ok := aU.(RawVectorer); ok {
|
||||
if brv, ok := bU.(RawVectorer); ok {
|
||||
amat := arv.RawVector()
|
||||
bmat := brv.RawVector()
|
||||
|
||||
if v != a {
|
||||
v.checkOverlap(amat)
|
||||
}
|
||||
if v != b {
|
||||
v.checkOverlap(bmat)
|
||||
}
|
||||
|
||||
if v.mat.Inc == 1 && amat.Inc == 1 && bmat.Inc == 1 {
|
||||
// Fast path for a common case.
|
||||
f64.AxpyUnitaryTo(v.mat.Data, -1, bmat.Data, amat.Data)
|
||||
return
|
||||
}
|
||||
f64.AxpyIncTo(v.mat.Data, uintptr(v.mat.Inc), 0,
|
||||
-1, bmat.Data, amat.Data,
|
||||
uintptr(ar), uintptr(bmat.Inc), uintptr(amat.Inc), 0, 0)
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
for i := 0; i < ar; i++ {
|
||||
v.setVec(i, a.AtVec(i)-b.AtVec(i))
|
||||
}
|
||||
}
|
||||
|
||||
// MulElemVec performs element-wise multiplication of a and b, placing the result
|
||||
// in the receiver.
|
||||
func (v *VecDense) MulElemVec(a, b Vector) {
|
||||
ar := a.Len()
|
||||
br := b.Len()
|
||||
|
||||
if ar != br {
|
||||
panic(ErrShape)
|
||||
}
|
||||
|
||||
v.reuseAs(ar)
|
||||
|
||||
aU, _ := untranspose(a)
|
||||
bU, _ := untranspose(b)
|
||||
|
||||
if arv, ok := aU.(RawVectorer); ok {
|
||||
if brv, ok := bU.(RawVectorer); ok {
|
||||
amat := arv.RawVector()
|
||||
bmat := brv.RawVector()
|
||||
|
||||
if v != a {
|
||||
v.checkOverlap(amat)
|
||||
}
|
||||
if v != b {
|
||||
v.checkOverlap(bmat)
|
||||
}
|
||||
|
||||
if v.mat.Inc == 1 && amat.Inc == 1 && bmat.Inc == 1 {
|
||||
// Fast path for a common case.
|
||||
for i, a := range amat.Data {
|
||||
v.mat.Data[i] = a * bmat.Data[i]
|
||||
}
|
||||
return
|
||||
}
|
||||
var ia, ib int
|
||||
for i := 0; i < ar; i++ {
|
||||
v.setVec(i, amat.Data[ia]*bmat.Data[ib])
|
||||
ia += amat.Inc
|
||||
ib += bmat.Inc
|
||||
}
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
for i := 0; i < ar; i++ {
|
||||
v.setVec(i, a.AtVec(i)*b.AtVec(i))
|
||||
}
|
||||
}
|
||||
|
||||
// DivElemVec performs element-wise division of a by b, placing the result
|
||||
// in the receiver.
|
||||
func (v *VecDense) DivElemVec(a, b Vector) {
|
||||
ar := a.Len()
|
||||
br := b.Len()
|
||||
|
||||
if ar != br {
|
||||
panic(ErrShape)
|
||||
}
|
||||
|
||||
v.reuseAs(ar)
|
||||
|
||||
aU, _ := untranspose(a)
|
||||
bU, _ := untranspose(b)
|
||||
|
||||
if arv, ok := aU.(RawVectorer); ok {
|
||||
if brv, ok := bU.(RawVectorer); ok {
|
||||
amat := arv.RawVector()
|
||||
bmat := brv.RawVector()
|
||||
|
||||
if v != a {
|
||||
v.checkOverlap(amat)
|
||||
}
|
||||
if v != b {
|
||||
v.checkOverlap(bmat)
|
||||
}
|
||||
|
||||
if v.mat.Inc == 1 && amat.Inc == 1 && bmat.Inc == 1 {
|
||||
// Fast path for a common case.
|
||||
for i, a := range amat.Data {
|
||||
v.setVec(i, a/bmat.Data[i])
|
||||
}
|
||||
return
|
||||
}
|
||||
var ia, ib int
|
||||
for i := 0; i < ar; i++ {
|
||||
v.setVec(i, amat.Data[ia]/bmat.Data[ib])
|
||||
ia += amat.Inc
|
||||
ib += bmat.Inc
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for i := 0; i < ar; i++ {
|
||||
v.setVec(i, a.AtVec(i)/b.AtVec(i))
|
||||
}
|
||||
}
|
||||
|
||||
// MulVec computes a * b. The result is stored into the receiver.
|
||||
// MulVec panics if the number of columns in a does not equal the number of rows in b
|
||||
// or if the number of columns in b does not equal 1.
|
||||
func (v *VecDense) MulVec(a Matrix, b Vector) {
|
||||
r, c := a.Dims()
|
||||
br, bc := b.Dims()
|
||||
if c != br || bc != 1 {
|
||||
panic(ErrShape)
|
||||
}
|
||||
|
||||
aU, trans := untranspose(a)
|
||||
var bmat blas64.Vector
|
||||
fast := true
|
||||
bU, _ := untranspose(b)
|
||||
if rv, ok := bU.(RawVectorer); ok {
|
||||
bmat = rv.RawVector()
|
||||
if v != b {
|
||||
v.checkOverlap(bmat)
|
||||
}
|
||||
} else {
|
||||
fast = false
|
||||
}
|
||||
|
||||
v.reuseAs(r)
|
||||
var restore func()
|
||||
if v == aU {
|
||||
v, restore = v.isolatedWorkspace(aU.(*VecDense))
|
||||
defer restore()
|
||||
} else if v == b {
|
||||
v, restore = v.isolatedWorkspace(b)
|
||||
defer restore()
|
||||
}
|
||||
|
||||
// TODO(kortschak): Improve the non-fast paths.
|
||||
switch aU := aU.(type) {
|
||||
case Vector:
|
||||
if b.Len() == 1 {
|
||||
// {n,1} x {1,1}
|
||||
v.ScaleVec(b.AtVec(0), aU)
|
||||
return
|
||||
}
|
||||
|
||||
// {1,n} x {n,1}
|
||||
if fast {
|
||||
if rv, ok := aU.(RawVectorer); ok {
|
||||
amat := rv.RawVector()
|
||||
if v != aU {
|
||||
v.checkOverlap(amat)
|
||||
}
|
||||
|
||||
if amat.Inc == 1 && bmat.Inc == 1 {
|
||||
// Fast path for a common case.
|
||||
v.setVec(0, f64.DotUnitary(amat.Data, bmat.Data))
|
||||
return
|
||||
}
|
||||
v.setVec(0, f64.DotInc(amat.Data, bmat.Data,
|
||||
uintptr(c), uintptr(amat.Inc), uintptr(bmat.Inc), 0, 0))
|
||||
return
|
||||
}
|
||||
}
|
||||
var sum float64
|
||||
for i := 0; i < c; i++ {
|
||||
sum += aU.AtVec(i) * b.AtVec(i)
|
||||
}
|
||||
v.setVec(0, sum)
|
||||
return
|
||||
case RawSymmetricer:
|
||||
if fast {
|
||||
amat := aU.RawSymmetric()
|
||||
// We don't know that a is a *SymDense, so make
|
||||
// a temporary SymDense to check overlap.
|
||||
(&SymDense{mat: amat}).checkOverlap(v.asGeneral())
|
||||
blas64.Symv(1, amat, bmat, 0, v.mat)
|
||||
return
|
||||
}
|
||||
case RawTriangular:
|
||||
v.CopyVec(b)
|
||||
amat := aU.RawTriangular()
|
||||
// We don't know that a is a *TriDense, so make
|
||||
// a temporary TriDense to check overlap.
|
||||
(&TriDense{mat: amat}).checkOverlap(v.asGeneral())
|
||||
ta := blas.NoTrans
|
||||
if trans {
|
||||
ta = blas.Trans
|
||||
}
|
||||
blas64.Trmv(ta, amat, v.mat)
|
||||
case RawMatrixer:
|
||||
if fast {
|
||||
amat := aU.RawMatrix()
|
||||
// We don't know that a is a *Dense, so make
|
||||
// a temporary Dense to check overlap.
|
||||
(&Dense{mat: amat}).checkOverlap(v.asGeneral())
|
||||
t := blas.NoTrans
|
||||
if trans {
|
||||
t = blas.Trans
|
||||
}
|
||||
blas64.Gemv(t, 1, amat, bmat, 0, v.mat)
|
||||
return
|
||||
}
|
||||
default:
|
||||
if fast {
|
||||
for i := 0; i < r; i++ {
|
||||
var f float64
|
||||
for j := 0; j < c; j++ {
|
||||
f += a.At(i, j) * bmat.Data[j*bmat.Inc]
|
||||
}
|
||||
v.setVec(i, f)
|
||||
}
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
for i := 0; i < r; i++ {
|
||||
var f float64
|
||||
for j := 0; j < c; j++ {
|
||||
f += a.At(i, j) * b.AtVec(j)
|
||||
}
|
||||
v.setVec(i, f)
|
||||
}
|
||||
}
|
||||
|
||||
// reuseAs resizes an empty vector to a r×1 vector,
|
||||
// or checks that a non-empty matrix is r×1.
|
||||
func (v *VecDense) reuseAs(r int) {
|
||||
if r == 0 {
|
||||
panic(ErrZeroLength)
|
||||
}
|
||||
if v.IsZero() {
|
||||
v.mat = blas64.Vector{
|
||||
N: r,
|
||||
Inc: 1,
|
||||
Data: use(v.mat.Data, r),
|
||||
}
|
||||
return
|
||||
}
|
||||
if r != v.mat.N {
|
||||
panic(ErrShape)
|
||||
}
|
||||
}
|
||||
|
||||
// IsZero returns whether the receiver is zero-sized. Zero-sized vectors can be the
|
||||
// receiver for size-restricted operations. VecDenses can be zeroed using Reset.
|
||||
func (v *VecDense) IsZero() bool {
|
||||
// It must be the case that v.Dims() returns
|
||||
// zeros in this case. See comment in Reset().
|
||||
return v.mat.Inc == 0
|
||||
}
|
||||
|
||||
func (v *VecDense) isolatedWorkspace(a Vector) (n *VecDense, restore func()) {
|
||||
l := a.Len()
|
||||
if l == 0 {
|
||||
panic(ErrZeroLength)
|
||||
}
|
||||
n = getWorkspaceVec(l, false)
|
||||
return n, func() {
|
||||
v.CopyVec(n)
|
||||
putWorkspaceVec(n)
|
||||
}
|
||||
}
|
||||
|
||||
// asDense returns a Dense representation of the receiver with the same
|
||||
// underlying data.
|
||||
func (v *VecDense) asDense() *Dense {
|
||||
return &Dense{
|
||||
mat: v.asGeneral(),
|
||||
capRows: v.mat.N,
|
||||
capCols: 1,
|
||||
}
|
||||
}
|
||||
|
||||
// asGeneral returns a blas64.General representation of the receiver with the
|
||||
// same underlying data.
|
||||
func (v *VecDense) asGeneral() blas64.General {
|
||||
return blas64.General{
|
||||
Rows: v.mat.N,
|
||||
Cols: 1,
|
||||
Stride: v.mat.Inc,
|
||||
Data: v.mat.Data,
|
||||
}
|
||||
}
|
||||
|
||||
// ColViewOf reflects the column j of the RawMatrixer m, into the receiver
|
||||
// backed by the same underlying data. The length of the receiver must either be
|
||||
// zero or match the number of rows in m.
|
||||
func (v *VecDense) ColViewOf(m RawMatrixer, j int) {
|
||||
rm := m.RawMatrix()
|
||||
|
||||
if j >= rm.Cols || j < 0 {
|
||||
panic(ErrColAccess)
|
||||
}
|
||||
if !v.IsZero() && v.mat.N != rm.Rows {
|
||||
panic(ErrShape)
|
||||
}
|
||||
|
||||
v.mat.Inc = rm.Stride
|
||||
v.mat.Data = rm.Data[j : (rm.Rows-1)*rm.Stride+j+1]
|
||||
v.mat.N = rm.Rows
|
||||
}
|
||||
|
||||
// RowViewOf reflects the row i of the RawMatrixer m, into the receiver
|
||||
// backed by the same underlying data. The length of the receiver must either be
|
||||
// zero or match the number of columns in m.
|
||||
func (v *VecDense) RowViewOf(m RawMatrixer, i int) {
|
||||
rm := m.RawMatrix()
|
||||
|
||||
if i >= rm.Rows || i < 0 {
|
||||
panic(ErrRowAccess)
|
||||
}
|
||||
if !v.IsZero() && v.mat.N != rm.Cols {
|
||||
panic(ErrShape)
|
||||
}
|
||||
|
||||
v.mat.Inc = 1
|
||||
v.mat.Data = rm.Data[i*rm.Stride : i*rm.Stride+rm.Cols]
|
||||
v.mat.N = rm.Cols
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue