mirror of
https://github.com/TECHNOFAB11/zfs-localpv.git
synced 2025-12-16 08:13:54 +01:00
feat(modules): migrate to go modules and bump go version 1.14.4
- migrate to go module - bump go version 1.14.4 Signed-off-by: prateekpandey14 <prateek.pandey@mayadata.io>
This commit is contained in:
parent
f5ae3ff476
commit
fa76b346a0
837 changed files with 104140 additions and 158314 deletions
318
vendor/gonum.org/v1/gonum/blas/gonum/sgemm.go
generated
vendored
Normal file
318
vendor/gonum.org/v1/gonum/blas/gonum/sgemm.go
generated
vendored
Normal file
|
|
@ -0,0 +1,318 @@
|
|||
// Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.
|
||||
|
||||
// Copyright ©2014 The Gonum Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package gonum
|
||||
|
||||
import (
|
||||
"runtime"
|
||||
"sync"
|
||||
|
||||
"gonum.org/v1/gonum/blas"
|
||||
"gonum.org/v1/gonum/internal/asm/f32"
|
||||
)
|
||||
|
||||
// Sgemm performs one of the matrix-matrix operations
|
||||
// C = alpha * A * B + beta * C
|
||||
// C = alpha * A^T * B + beta * C
|
||||
// C = alpha * A * B^T + beta * C
|
||||
// C = alpha * A^T * B^T + beta * C
|
||||
// where A is an m×k or k×m dense matrix, B is an n×k or k×n dense matrix, C is
|
||||
// an m×n matrix, and alpha and beta are scalars. tA and tB specify whether A or
|
||||
// B are transposed.
|
||||
//
|
||||
// Float32 implementations are autogenerated and not directly tested.
|
||||
func (Implementation) Sgemm(tA, tB blas.Transpose, m, n, k int, alpha float32, a []float32, lda int, b []float32, ldb int, beta float32, c []float32, ldc int) {
|
||||
switch tA {
|
||||
default:
|
||||
panic(badTranspose)
|
||||
case blas.NoTrans, blas.Trans, blas.ConjTrans:
|
||||
}
|
||||
switch tB {
|
||||
default:
|
||||
panic(badTranspose)
|
||||
case blas.NoTrans, blas.Trans, blas.ConjTrans:
|
||||
}
|
||||
if m < 0 {
|
||||
panic(mLT0)
|
||||
}
|
||||
if n < 0 {
|
||||
panic(nLT0)
|
||||
}
|
||||
if k < 0 {
|
||||
panic(kLT0)
|
||||
}
|
||||
aTrans := tA == blas.Trans || tA == blas.ConjTrans
|
||||
if aTrans {
|
||||
if lda < max(1, m) {
|
||||
panic(badLdA)
|
||||
}
|
||||
} else {
|
||||
if lda < max(1, k) {
|
||||
panic(badLdA)
|
||||
}
|
||||
}
|
||||
bTrans := tB == blas.Trans || tB == blas.ConjTrans
|
||||
if bTrans {
|
||||
if ldb < max(1, k) {
|
||||
panic(badLdB)
|
||||
}
|
||||
} else {
|
||||
if ldb < max(1, n) {
|
||||
panic(badLdB)
|
||||
}
|
||||
}
|
||||
if ldc < max(1, n) {
|
||||
panic(badLdC)
|
||||
}
|
||||
|
||||
// Quick return if possible.
|
||||
if m == 0 || n == 0 {
|
||||
return
|
||||
}
|
||||
|
||||
// For zero matrix size the following slice length checks are trivially satisfied.
|
||||
if aTrans {
|
||||
if len(a) < (k-1)*lda+m {
|
||||
panic(shortA)
|
||||
}
|
||||
} else {
|
||||
if len(a) < (m-1)*lda+k {
|
||||
panic(shortA)
|
||||
}
|
||||
}
|
||||
if bTrans {
|
||||
if len(b) < (n-1)*ldb+k {
|
||||
panic(shortB)
|
||||
}
|
||||
} else {
|
||||
if len(b) < (k-1)*ldb+n {
|
||||
panic(shortB)
|
||||
}
|
||||
}
|
||||
if len(c) < (m-1)*ldc+n {
|
||||
panic(shortC)
|
||||
}
|
||||
|
||||
// Quick return if possible.
|
||||
if (alpha == 0 || k == 0) && beta == 1 {
|
||||
return
|
||||
}
|
||||
|
||||
// scale c
|
||||
if beta != 1 {
|
||||
if beta == 0 {
|
||||
for i := 0; i < m; i++ {
|
||||
ctmp := c[i*ldc : i*ldc+n]
|
||||
for j := range ctmp {
|
||||
ctmp[j] = 0
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for i := 0; i < m; i++ {
|
||||
ctmp := c[i*ldc : i*ldc+n]
|
||||
for j := range ctmp {
|
||||
ctmp[j] *= beta
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
sgemmParallel(aTrans, bTrans, m, n, k, a, lda, b, ldb, c, ldc, alpha)
|
||||
}
|
||||
|
||||
func sgemmParallel(aTrans, bTrans bool, m, n, k int, a []float32, lda int, b []float32, ldb int, c []float32, ldc int, alpha float32) {
|
||||
// dgemmParallel computes a parallel matrix multiplication by partitioning
|
||||
// a and b into sub-blocks, and updating c with the multiplication of the sub-block
|
||||
// In all cases,
|
||||
// A = [ A_11 A_12 ... A_1j
|
||||
// A_21 A_22 ... A_2j
|
||||
// ...
|
||||
// A_i1 A_i2 ... A_ij]
|
||||
//
|
||||
// and same for B. All of the submatrix sizes are blockSize×blockSize except
|
||||
// at the edges.
|
||||
//
|
||||
// In all cases, there is one dimension for each matrix along which
|
||||
// C must be updated sequentially.
|
||||
// Cij = \sum_k Aik Bki, (A * B)
|
||||
// Cij = \sum_k Aki Bkj, (A^T * B)
|
||||
// Cij = \sum_k Aik Bjk, (A * B^T)
|
||||
// Cij = \sum_k Aki Bjk, (A^T * B^T)
|
||||
//
|
||||
// This code computes one {i, j} block sequentially along the k dimension,
|
||||
// and computes all of the {i, j} blocks concurrently. This
|
||||
// partitioning allows Cij to be updated in-place without race-conditions.
|
||||
// Instead of launching a goroutine for each possible concurrent computation,
|
||||
// a number of worker goroutines are created and channels are used to pass
|
||||
// available and completed cases.
|
||||
//
|
||||
// http://alexkr.com/docs/matrixmult.pdf is a good reference on matrix-matrix
|
||||
// multiplies, though this code does not copy matrices to attempt to eliminate
|
||||
// cache misses.
|
||||
|
||||
maxKLen := k
|
||||
parBlocks := blocks(m, blockSize) * blocks(n, blockSize)
|
||||
if parBlocks < minParBlock {
|
||||
// The matrix multiplication is small in the dimensions where it can be
|
||||
// computed concurrently. Just do it in serial.
|
||||
sgemmSerial(aTrans, bTrans, m, n, k, a, lda, b, ldb, c, ldc, alpha)
|
||||
return
|
||||
}
|
||||
|
||||
nWorkers := runtime.GOMAXPROCS(0)
|
||||
if parBlocks < nWorkers {
|
||||
nWorkers = parBlocks
|
||||
}
|
||||
// There is a tradeoff between the workers having to wait for work
|
||||
// and a large buffer making operations slow.
|
||||
buf := buffMul * nWorkers
|
||||
if buf > parBlocks {
|
||||
buf = parBlocks
|
||||
}
|
||||
|
||||
sendChan := make(chan subMul, buf)
|
||||
|
||||
// Launch workers. A worker receives an {i, j} submatrix of c, and computes
|
||||
// A_ik B_ki (or the transposed version) storing the result in c_ij. When the
|
||||
// channel is finally closed, it signals to the waitgroup that it has finished
|
||||
// computing.
|
||||
var wg sync.WaitGroup
|
||||
for i := 0; i < nWorkers; i++ {
|
||||
wg.Add(1)
|
||||
go func() {
|
||||
defer wg.Done()
|
||||
for sub := range sendChan {
|
||||
i := sub.i
|
||||
j := sub.j
|
||||
leni := blockSize
|
||||
if i+leni > m {
|
||||
leni = m - i
|
||||
}
|
||||
lenj := blockSize
|
||||
if j+lenj > n {
|
||||
lenj = n - j
|
||||
}
|
||||
|
||||
cSub := sliceView32(c, ldc, i, j, leni, lenj)
|
||||
|
||||
// Compute A_ik B_kj for all k
|
||||
for k := 0; k < maxKLen; k += blockSize {
|
||||
lenk := blockSize
|
||||
if k+lenk > maxKLen {
|
||||
lenk = maxKLen - k
|
||||
}
|
||||
var aSub, bSub []float32
|
||||
if aTrans {
|
||||
aSub = sliceView32(a, lda, k, i, lenk, leni)
|
||||
} else {
|
||||
aSub = sliceView32(a, lda, i, k, leni, lenk)
|
||||
}
|
||||
if bTrans {
|
||||
bSub = sliceView32(b, ldb, j, k, lenj, lenk)
|
||||
} else {
|
||||
bSub = sliceView32(b, ldb, k, j, lenk, lenj)
|
||||
}
|
||||
sgemmSerial(aTrans, bTrans, leni, lenj, lenk, aSub, lda, bSub, ldb, cSub, ldc, alpha)
|
||||
}
|
||||
}
|
||||
}()
|
||||
}
|
||||
|
||||
// Send out all of the {i, j} subblocks for computation.
|
||||
for i := 0; i < m; i += blockSize {
|
||||
for j := 0; j < n; j += blockSize {
|
||||
sendChan <- subMul{
|
||||
i: i,
|
||||
j: j,
|
||||
}
|
||||
}
|
||||
}
|
||||
close(sendChan)
|
||||
wg.Wait()
|
||||
}
|
||||
|
||||
// sgemmSerial is serial matrix multiply
|
||||
func sgemmSerial(aTrans, bTrans bool, m, n, k int, a []float32, lda int, b []float32, ldb int, c []float32, ldc int, alpha float32) {
|
||||
switch {
|
||||
case !aTrans && !bTrans:
|
||||
sgemmSerialNotNot(m, n, k, a, lda, b, ldb, c, ldc, alpha)
|
||||
return
|
||||
case aTrans && !bTrans:
|
||||
sgemmSerialTransNot(m, n, k, a, lda, b, ldb, c, ldc, alpha)
|
||||
return
|
||||
case !aTrans && bTrans:
|
||||
sgemmSerialNotTrans(m, n, k, a, lda, b, ldb, c, ldc, alpha)
|
||||
return
|
||||
case aTrans && bTrans:
|
||||
sgemmSerialTransTrans(m, n, k, a, lda, b, ldb, c, ldc, alpha)
|
||||
return
|
||||
default:
|
||||
panic("unreachable")
|
||||
}
|
||||
}
|
||||
|
||||
// sgemmSerial where neither a nor b are transposed
|
||||
func sgemmSerialNotNot(m, n, k int, a []float32, lda int, b []float32, ldb int, c []float32, ldc int, alpha float32) {
|
||||
// This style is used instead of the literal [i*stride +j]) is used because
|
||||
// approximately 5 times faster as of go 1.3.
|
||||
for i := 0; i < m; i++ {
|
||||
ctmp := c[i*ldc : i*ldc+n]
|
||||
for l, v := range a[i*lda : i*lda+k] {
|
||||
tmp := alpha * v
|
||||
if tmp != 0 {
|
||||
f32.AxpyUnitary(tmp, b[l*ldb:l*ldb+n], ctmp)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// sgemmSerial where neither a is transposed and b is not
|
||||
func sgemmSerialTransNot(m, n, k int, a []float32, lda int, b []float32, ldb int, c []float32, ldc int, alpha float32) {
|
||||
// This style is used instead of the literal [i*stride +j]) is used because
|
||||
// approximately 5 times faster as of go 1.3.
|
||||
for l := 0; l < k; l++ {
|
||||
btmp := b[l*ldb : l*ldb+n]
|
||||
for i, v := range a[l*lda : l*lda+m] {
|
||||
tmp := alpha * v
|
||||
if tmp != 0 {
|
||||
ctmp := c[i*ldc : i*ldc+n]
|
||||
f32.AxpyUnitary(tmp, btmp, ctmp)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// sgemmSerial where neither a is not transposed and b is
|
||||
func sgemmSerialNotTrans(m, n, k int, a []float32, lda int, b []float32, ldb int, c []float32, ldc int, alpha float32) {
|
||||
// This style is used instead of the literal [i*stride +j]) is used because
|
||||
// approximately 5 times faster as of go 1.3.
|
||||
for i := 0; i < m; i++ {
|
||||
atmp := a[i*lda : i*lda+k]
|
||||
ctmp := c[i*ldc : i*ldc+n]
|
||||
for j := 0; j < n; j++ {
|
||||
ctmp[j] += alpha * f32.DotUnitary(atmp, b[j*ldb:j*ldb+k])
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// sgemmSerial where both are transposed
|
||||
func sgemmSerialTransTrans(m, n, k int, a []float32, lda int, b []float32, ldb int, c []float32, ldc int, alpha float32) {
|
||||
// This style is used instead of the literal [i*stride +j]) is used because
|
||||
// approximately 5 times faster as of go 1.3.
|
||||
for l := 0; l < k; l++ {
|
||||
for i, v := range a[l*lda : l*lda+m] {
|
||||
tmp := alpha * v
|
||||
if tmp != 0 {
|
||||
ctmp := c[i*ldc : i*ldc+n]
|
||||
f32.AxpyInc(tmp, b[l:], ctmp, uintptr(n), uintptr(ldb), 1, 0, 0)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func sliceView32(a []float32, lda, i, j, r, c int) []float32 {
|
||||
return a[i*lda+j : (i+r-1)*lda+j+c]
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue