feat(topology): adding support for custom topology keys (#94)

This commit adds the support for use to specify custom labels to the kubernetes nodes and use them in the allowedToplogoies section of the StorageClass. 

Few notes:
- This PR depends on the CSI driver's capability to support custom topology keys. 
- label on the nodes should be added first and then deploy the driver to make it aware of
all the labels that node has. If labels are added after ZFS-LocalPV driver
has been deployed, a restart all the node csi driver agents is required so that the driver
can pick the labels and add them as supported topology keys.
- if storageclass is using Immediate binding mode and topology key is not mentioned
then all the nodes should be labeled using same key, that means:
  - same key should be present on all nodes, nodes can have different values for those keys. 
  - If nodes are labeled with different keys i.e. some nodes are having different keys, then ZFSPV's default scheduler can not effictively do the volume count based scheduling. In this case the CSI provisioner will pick keys from any random node and then prepare the preferred topology list using the nodes which has those keys defined. And ZFSPV scheduler will schedule the PV among those nodes only.

Signed-off-by: Pawan <pawan@mayadata.io>
This commit is contained in:
Pawan Prakash Sharma 2020-04-30 14:13:29 +05:30 committed by GitHub
parent f65575e447
commit de9b302083
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
7 changed files with 184 additions and 13 deletions

View file

@ -37,7 +37,7 @@ openebs-zfs-node-twmx8 2/2 Running 0 5h28m
### 3. How to upgrade the driver to newer version
In the [operator file](../deploy/zfs-operator.yaml), change the zfs-driver image to the required tag which you want (like for tag v0.2 use `quay.io/openebs/zfs-driver:v0.2`), and then apply the yaml, there are two places where we need to change the image, one for the controller and once for the node agent. By default, the operator uses the `ci` tag which always points to development image not the release tag, so if you want to test the development image you can use ci tag. Please note that the default ImagePullPolicy is IfNotPresent, that means if `ci` image is already there on the node, it will not be pulled again.
Follow the instructions here https://github.com/openebs/zfs-localpv/tree/master/upgrade.
### 4. ZFS Pools are there on certain nodes only, how can I create the storage class.
@ -67,7 +67,7 @@ The above storage class tells that ZFS pool "zfspv-pool" is available on nodes z
Please note that the provisioner name for ZFS driver is "zfs.csi.openebs.io", we have to use this while creating the storage class so that the volume provisioning/deprovisioning request can come to ZFS driver.
### 3. How to install the provisioner in HA
### 5. How to install the provisioner in HA
To have HA for the provisioner(controller), we can update the replica count to 2(or more as per need) and deploy the yaml. Once yaml is deployed, you can see 2(or more) controller pod running. At a time only one will be active and once it is down, the other will take over. They will use lease mechanism to decide who is active/master. Please note that it has anti affinity rules, so on one node only one pod will be running, that means, if you are using 2 replicas on a single node cluster, the other pod will be in pending state because of the anti-affinity rule. So, before changing the replica count, please make sure you have sufficient nodes.
@ -88,3 +88,84 @@ spec:
replicas: 2
---
```
### 6. How to add custom topology key
To add custom topology key, we can label all the nodes with the required key and value :-
```sh
$ kubectl label node pawan-node-1 openebs.io/rack=rack1
node/pawan-node-1 labeled
$ kubectl get nodes pawan-node-1 --show-labels
NAME STATUS ROLES AGE VERSION LABELS
pawan-node-1 Ready worker 16d v1.17.4 beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,kubernetes.io/arch=amd64,kubernetes.io/hostname=pawan-node-1,kubernetes.io/os=linux,node-role.kubernetes.io/worker=true,openebs.io/rack=rack1
```
It is recommended is to label all the nodes with the same key, they can have different values for the given keys, but all keys should be present on all the worker node.
Once we have labeled the node, we can install the zfs driver. The driver will pick the node labels and add that as the supported topology key. If the driver is already installed and you want to add a new topology information, you can label the node with the topology information and then restart of the ZFSPV CSI driver daemon sets (openebs-zfs-node) are required so that the driver can pick the labels and add them as supported topology keys. We should restart the pod in kube-system namespace with the name as openebs-zfs-node-[xxxxx] which is the node agent pod for the ZFS-LocalPV Driver.
```sh
$ kubectl get pods -n kube-system -l role=openebs-zfs
NAME READY STATUS RESTARTS AGE
openebs-zfs-controller-0 4/4 Running 0 5h28m
openebs-zfs-node-4d94n 2/2 Running 0 5h28m
openebs-zfs-node-gssh8 2/2 Running 0 5h28m
openebs-zfs-node-twmx8 2/2 Running 0 5h28m
```
We can verify that key has been registered successfully with the ZFSPV CSI Driver by checking the CSI node object yaml :-
```yaml
$ kubectl get csinodes pawan-node-1 -oyaml
apiVersion: storage.k8s.io/v1
kind: CSINode
metadata:
creationTimestamp: "2020-04-13T14:49:59Z"
name: pawan-node-1
ownerReferences:
- apiVersion: v1
kind: Node
name: pawan-node-1
uid: fe268f4b-d9a9-490a-a999-8cde20c4dadb
resourceVersion: "4586341"
selfLink: /apis/storage.k8s.io/v1/csinodes/pawan-node-1
uid: 522c2110-9d75-4bca-9879-098eb8b44e5d
spec:
drivers:
- name: zfs.csi.openebs.io
nodeID: pawan-node-1
topologyKeys:
- beta.kubernetes.io/arch
- beta.kubernetes.io/os
- kubernetes.io/arch
- kubernetes.io/hostname
- kubernetes.io/os
- node-role.kubernetes.io/worker
- openebs.io/rack
```
We can see that "openebs.io/rack" is listed as topology key. Now we can create a storageclass with the topology key created :
```yaml
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: openebs-zfspv
allowVolumeExpansion: true
parameters:
fstype: "zfs"
poolname: "zfspv-pool"
provisioner: zfs.csi.openebs.io
allowedTopologies:
- matchLabelExpressions:
- key: openebs.io/rack
values:
- rack1
```
The ZFSPV CSI driver will schedule the PV to the nodes where label "openebs.io/rack" is set to "rack1". If there are multiple nodes qualifying this prerequisite, then it will pick the node which has less number of volumes provisioned for the given ZFS Pool.
Note that if storageclass is using Immediate binding mode and topology key is not mentioned then all the nodes should be labeled using same key, that means, same key should be present on all nodes, nodes can have different values for those keys. If nodes are labeled with different keys i.e. some nodes are having different keys, then ZFSPV's default scheduler can not effictively do the volume count based scheduling. Here, in this case the CSI provisioner will pick keys from any random node and then prepare the preferred topology list using the nodes which has those keys defined and ZFSPV scheduler will schedule the PV among those nodes only.